Retour
Année universitaire 2024/2025

Mathématiques et Applications - 1re année de Master - Majeure Actuariat

Responsables pédagogiques :

Crédits ECTS : 60

Les objectifs de la formation

La majeure "Actuariat" propose une introduction aux mathématiques de l'assurance : modélisation des risques "vie" et "non-vie"; introduction au provisionnement; théorie de la crédibilité et théorie de la ruine.

Les débouchés naturels sont les Masters 2 en actuariat (M2 Actuariat) ou en ingénierie mathématique (M2 ISF, classique ou apprentissage).
Un "English Track" est proposé aux étudiants, qui peuvent ainsi suivre la plupart des cours et des TD en anglais.

Les objectifs de la formation :

Modalités d'enseignement

La majeure Actuariat est sélective. A l’issue de la 3e année de la Dauphine-Licence Mathématiques appliquées, les étudiants souhaitant intégrer cette majeure doivent en faire la demande. Seuls les étudiants sélectionnés et les étudiants admis au concours BECEAS (s’ils ont validé la Dauphine-Licence Mathématiques appliquées) pourront suivre la majeure Actuariat.
 
La formation débute la dernière semaine d'août et la présence en cours est obligatoire.
 
La validation d’une année entraîne la validation de chacun des deux semestres et de toutes les UE et ECTS associés.

Admissions

Programme de la formation

Description de chaque enseignement

Semestre 1

UE Fondamentales S1

Discrete processes

ECTS : 4

Enseignant responsable : JULIEN CLAISSE (https://dauphine.psl.eu/recherche/cvtheque/claisse-julien)

Langue du cours : Anglais

Volume horaire : 37.5

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30

Espérance conditionnelle.
Martingales. Stratégies. Convergence des martingales. Arrêt optionnel.
Chaînes de Markov.

Compétences à acquérir :

Introduction à la modélisation aléatoire dynamique.


Linear models and generalizations

ECTS : 4

Enseignant responsable : KATIA MULLER MEZIANI (https://dauphine.psl.eu/recherche/cvtheque/meziani-katia)

Langue du cours : Anglais

Volume horaire : 45

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30
TP : 7h30

Modèle linéaire (gaussien et non gaussien) : estimateur des moindres carrés ordinaire, intervalles de confiance et de prédiction, test de Student et test de Fisher. 

Critères de sélection de modèle (Cp de Mallows, AIC, BIC) et procédures de sélection de variables (forward, backward). 

Analyse de la variance à un et deux facteurs. 

Modèles linéaires généralisés, formalisation, modèles logit, probit, tobit et généralisations.

Compétences à acquérir :

Ce cours vise à décrire la construction et l’analyse des divers modèles paramétriques de régression linéaire et non-linéaire reliant un groupe de variables explicatives à une variable expliquée. Il inclut également des TP en R.

Pré-requis obligatoires

Algèbre linéaire. 

Pré-requis recommandés

Estimation et tests statistique. 

Mode de contrôle des connaissances :

Partiel, examen et projet. 


Optimization

ECTS : 4

Enseignant responsable : YANNICK VIOSSAT (https://dauphine.psl.eu/recherche/cvtheque/viossat-yannick)

Langue du cours : Anglais

Volume horaire : 37.5

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30

Optimisation dans R^n (cas général et cas convexe).
Optimisation sous contraintes d’égalités et d’inégalités : KKT, cas convexe, lemme de Farkas, dualité, méthodes numériques (gradient projeté, Usawa).
Programmation dynamique en temps discret (problèmes en horizon fini, problèmes en horizon infini avec coût escompté). Calcul des variations. Introduction à la théorie du contrôle optimal (principe de Pontriaguine, équation de Hamilton-Jacobi-Bellman).

Compétences à acquérir :

L’objectif de ce cours est d'étudier, d’une part, l’optimisation sous contraintes dans R^n et, d’autre part, les techniques de programmation dynamique déterministe qui sont fondamentales dans les applications.

Pré-requis recommandés

Optimisation dans R^n sans contraintes. 

Mode de contrôle des connaissances :

Examen sur table (mi-semestre et fin de semestre).


Analyse des données

ECTS : 4

Enseignant responsable : DENIS PASQUIGNON

Langue du cours : Français

Volume horaire : 37.5

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30

Généralités sur l’analyse des données, tableaux, problèmes de codages.
Nuages de points et caractéristiques associées.
Analyse en Composantes Principales.
Analyse Factorielle sur Tableaux de Distances.
Analyse Factorielle des Correspondances.
Analyse des Correspondances Multiples.

Compétences à acquérir :

Donner les notions de base de l’analyse des données.

Mode de contrôle des connaissances :

Partiel au milieu du semestre et un examen final.

Bibliographie, lectures recommandées :

"Probabilités, analyse de données et Statistique" Gilbert Saporta, éditions Technip


UE de majeure Actuariat S1

Actuariat 1

ECTS : 4

Enseignant responsable : QUENTIN GUIBERT (https://dauphine.psl.eu/recherche/cvtheque/guibert-quentin)

Langue du cours : Français

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30
 
Présenter les notions et mécanismes de base de l’assurance, typologie des modèles.
Principe de calculs des primes et comparaison des risques.
Modélisation des risques non-vie (la fréquence des sinistres, les coûts des sinistres).
Modélisation des risques vie (probabilité viagère, valeur actuelle probable).
Éléments sur la modélisation du montant cumulé des sinistres (mutualisation et agrégation). 

Compétences à acquérir :

Présenter les méthodes quantitatives de base dont dispose l’assureur  pour la modélisation, la tarification et l’évaluation prévisionnelle des  dépenses d’indemnisation des sinistres. Ces méthodes permettent,  notamment de déterminer le montant des primes et de décider le montant  de capital au risque. 

Mode de contrôle des connaissances :

1 examen terminal et 1 examen partiel 


Portfolio management

ECTS : 4

Enseignant responsable : PIERRE BRUGIERE (https://sites.google.com/view/pierrebrugiere/home)

Langue du cours : Anglais

Volume horaire : 39

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30

Théorie de Markowitz pour le choix de portefeuille (critère moyenne-variance) ; notion de portefeuille efficient ; mesure de risque et Value at Risk.

Portefeuille de Marché et Portefeuille Tangent, théorème des deux fonds, modèle du CAPM, équation de la Security Market Line et beta.

Les différents indicateurs : ratio de Sharpe, alpha, ratio de Treynor.

La décompostion et rémunération du risque: modèles à facteurs, modèle de Fama-French, modèles APT.

Analyse factorielle.

Compétences à acquérir :

Ce cours est une introduction aux méthodes quantitatives en gestion de portefeuille. 

Pré-requis obligatoires

connaissances des vecteurs gaussiens, algèbre linéaire de base, calcul différentiel.

Pré-requis recommandés

connaissances en optimisation convexe sous contraintes affines

Mode de contrôle des connaissances :

Partiel, Examen, potentiellement projet en Python

Bibliographie, lectures recommandées :

"Quantitative Portfolio Management", Pierre Brugière,  Springer 2020


UE Complémentaires S1

Anglais 1

ECTS : 2

Enseignant responsable : VERONIQUE BOURREL

Langue du cours : Anglais

Volume horaire : 19.5

Description du contenu de l'enseignement :

Contenu : professionnels, culturels, d’actualité et de société

Forme : débats, jeux de rôles, quiz et activités ludiques

Méthodologie : prise de parole en public, travail sur l’expression orale

Thématiques au programme: Inclusion & exclusion, Thinking outside the box

Compétences à acquérir :

Savoir s’exprimer à l’oral

Améliorer ses compétences langagières et communicationnelles

Enrichir son vocabulaire

Développer sa créativité

Travailler en équipe

Pré-requis obligatoires

Une attitude professionnelle (ponctualité et sérieux)

Pré-requis recommandés

Une volonté de s’investir et un niveau d’anglais correct

Mode de contrôle des connaissances :

100% contrôle continu

3 notes : jeu de rôles +présentation orale + note d’oral


UE Optionnelles S1

Série temporelles

ECTS : 4

Enseignant responsable : PIERRE CARDALIAGUET (https://dauphine.psl.eu/recherche/cvtheque/viossat-yannick)

Langue du cours : Français et anglais

Volume horaire : 37.5

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30

Échantillonnage
Quantification
Compression sans perte et correction d’erreurs
L’algorithme FFT
Filtres numériques
Conception de filtres numériques
Compression avec perte, introduction au MP3

Compétences à acquérir :

Comprendre les mathématiques du filtrage et du traitement de l’information et les principes de la numérisation des signaux. Avoir une vision globale des techniques du traitement de l’information.


Monte-Carlo methods

ECTS : 4

Enseignant responsable : CHRISTIAN ROBERT (https://dauphine.psl.eu/recherche/cvtheque/robert-christian-p)

Langue du cours : Anglais

Volume horaire : 40.5

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 10h30
TD : 6h00
TP : 24h00

  • Introduction de la méthode de Monte-Carlo
  • Méthodes de simulation de variables aléatoires
  • Techniques de réduction de variance

Compétences à acquérir :

L’objectif de ce cours est d’introduire les méthodes dites de Monte-Carlo. Ces méthodes sont utilisées pour calculer des espérances (et par extension des intégrales) par simulation de variables aléatoires. La simplicite´ de la me´thode, sa flexibilite´ et son efficacite´ pour les proble`mes en grande dimension en font un outil inte´ressant pour des domaines d’applications variés allant de la physique à la finance de marché. L’objectif de ce cours est non seulement de fournir les bases théoriques des méthodes de Monte-Carlo, mais aussi de fournir les outils pour leur utilisation pratique.

Mode de contrôle des connaissances :

  • Examen écrit (70% de la note finale) 
  • Contrôle continu (30% de la note finale). Le contrôle continu se compose d'un projet à la maison et d'un TP noté en séance, tous deux à réaliser avec le language de programmation R.

Coefficient : 4 ECTS

Bibliographie, lectures recommandées :

  • C.P.Robert and G.Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer-Verlag New York, 2 edition, 2004.
  • B. Ycart. Modèles et Algorithmes Markoviens, volume 39 of Mathématiques et Applications. Springer-Verlag Berlin Heidelberg, 2002.


Semestre 2

UE Fondamentales S2

Brownian motion and evaluation of contingent claims

ECTS : 4

Enseignant responsable : PHILIPPE BERGAULT (https://dauphine.psl.eu/recherche/cvtheque/bergault-philippe)

Langue du cours : Anglais

Volume horaire : 39

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30

Évaluation d’actifs contingents en absence d’opportunités d’arbitrage : cadre du temps discret opportunités d’arbitrage ; stratégies de réplication et évaluation ; modèle de Cox-Ross et Rubinstein.
Introduction au calcul stochastique en temps continu (mouvement Brownien ; intégrale d’Itô).
Modèle de Black et Scholes (modèle de marché en temps continu ; équation de Black et Scholes et prix d’options ; définition et utilisation des grecques).

Compétences à acquérir :

Étude du mouvement Brownien et son utilisation pour la modélisation des prix des actifs financiers. Présenter la méthodologie de l’évaluation d’actifs en Absence d’opportunités d’Arbitrage dans des modèles en temps continu et présenter le modèle de Black et Scholes.


Poisson process

ECTS : 4

Enseignant responsable : STEFANO OLLA (https://dauphine.psl.eu/recherche/cvtheque/olla-stefano)

Langue du cours : Anglais

Volume horaire : 39

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30

- Définitions et propriétés importantes des processus de Poisson (loi jointe des temps sauts, comportements asymptotiques).
- Définitions et propriétés importantes des processus de Markov à espace d’états dénombrable.

Compétences à acquérir :

Introduction des processus à temps continus fondamentaux en probabilités, tels que les chaînes de Markov à espace d’états dénombrable.


Statistical learning

ECTS : 4

Enseignant responsable : GABRIEL TURINICI (https://turinici.com)

Langue du cours : Anglais

Volume horaire : 39

Description du contenu de l'enseignement :

  • Introduction : apprentissage supervisé/non-supervis / RL; régression et classification, procédure générale d’apprentissage, évaluation du modèle, sur/sous-apprentissage. 
  • Méthode des K plus proches voisins et notion de “curse of dimensionality”.
  • Régression linéaire en grande dimension, sélection des variables et régularisation du modèle (Ridge et Lasso).
  • Algorithme du gradient (descente classique, stochastique et mini-batch) (optionnel).
  • réseaux néuronaux (neural networks): introduction, operation, datasets, training, exemples, implémentations
  • (Non-supervisé) K-means clustering.

Compétences à acquérir :

Connaître les bases de l’apprentissage statistique, en particulier dans un contexte de grande dimension, incluant les "neural networks".

Pré-requis obligatoires

Probabilités ( y compris "Espérance conditionnelle" ), statistiques ( Niveau L3 ), analyse numérique

Mode de contrôle des connaissances :

cf. CC

Bibliographie, lectures recommandées :

cf. site du cours.

En savoir plus sur le cours : https://turinici.com


UE de majeure Actuariat S2

Actuariat 2

ECTS : 4

Enseignant responsable : QUENTIN GUIBERT (https://dauphine.psl.eu/recherche/cvtheque/guibert-quentin)

Langue du cours : Français

Volume horaire : 39

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30

  1. Introduction au provisionnement en assurance
    1. Provisionnement en assurance non vie : PSAP, méthodes algorithmiques, méthodes stochastiques
    2. Provisionnement en assurance vie : formule prospective et rétrospective
  2. Théorie de la crédibilité 
    1. Crédibilité bayésienne de Jewell
    2. Crédibilité linéaire de Buhlmann-Straub
  3. Théorie de la ruine 
    1. Convergence, martingale, formule 
    2. Formule explicite Poisson composée 
    3. Approximations et borne de Cramer-Lundberg 
    4. Impact de la loi de sévérité sur la probabilité de ruine

Compétences à acquérir :

Étude de trois problématiques classiques en assurance : la théorie de la ruine (et les processus stochastiques associés), l’introduction au provisionnement vie et non-vie, et la théorie de la crédibilité.

Pré-requis recommandés

Actuariat 1

Mode de contrôle des connaissances :

1 examen terminal et 1 examen partiel


Comptabilité de l'entreprise

ECTS : 4

Langue du cours : Français

Volume horaire : 39

Description du contenu de l'enseignement :

Sur la base d’une approche pédagogique fondée sur des exercices pratiques et des études de cas, l’étudiant acquiert les bases de la finance d’entreprise et les clés d’appréciation de leur santé financière, en particulier :
-La compréhension du langage comptable, c’est-à-dire des écritures d’enregistrement et des agrégats du compte de résultat et du bilan.
-La connaissance des méthodes de valorisation des actifs et des passifs, en particulier des provisions.
-L’analyse de la rentabilité et de la capacité d’autofinancement d’une entreprise.
-La présentation des règles essentielles en matière de consolidation de comptes.
-Des repères en matière de fiscalité et d’IFRS.

Déroulement des cours :
- Avant la séance. Des exercices simples de compréhension ou d’application sont à effectuer pour permettre aux étudiants de contrôler leurs acquis.
- Pendant la séance. Les concepts éventuels sont rappelés, approfondis, voire réexpliqués si nécessaire. Des exercices ou cas préparés par écrit sont discutés et expliqués. Leur préparation effective par les étudiants est contrôlée.
- Après la séance. Des pistes d’approfondissement, de réflexion et d’ouverture sont proposées pour permettre aux étudiants de faire le lien entre le cours, son cadre conceptuel et la réalité des entreprises.

Compétences à acquérir :

La comptabilité est un système d’organisation de l’information financière qui permet de saisir, classer et enregistrer des données chiffrées. Sa finalité est de réaliser des états à destination de tous les interlocuteurs d’une entité économique, qu’ils soient externes (administration fiscale, clients, créanciers, banques, marchés financiers), ou internes (dirigeants, gestionnaires, salariés).
Le cours d’analyse financière s’attache à apporter les bases indispensables que tout étudiant doit posséder pour connaître et comprendre les principales normes et techniques comptables applicables aux entreprises dans le cadre du plan comptable général.
Certaines divergences entre les conventions internationales (IFRS) et nationales (françaises) seront évoquées à titre d’illustration.


UE Complémentaires S2

Anglais 2

ECTS : 2

Enseignant responsable : VERONIQUE BOURREL

Langue du cours : Anglais

Description du contenu de l'enseignement :

Contenu : professionnel, culturel, d’actualité et de société

Forme : débats, jeux de rôles, quiz et activités ludiques

Méthodologie : prise de parole en public, travail sur l’expression orale

Thématique au programme: The professional world, Finance

Compétences à acquérir :

Savoir s’exprimer à l’oral

Améliorer ses compétences langagières et communicationnelles

Enrichir son vocabulaire

Développer sa créativité

Travailler en équipe

Pré-requis obligatoires

Une attitude professionnelle (ponctualité et sérieux)

Pré-requis recommandés

Une volonté de s’investir et un niveau d’anglais correct

Mode de contrôle des connaissances :

100% contrôle continu

3 notes : jeu de rôles +présentation orale + note d’oral


Mémoire de M1

ECTS : 4

Langue du cours : Français

Description du contenu de l'enseignement :

Rédaction d’un projet par groupe de 2 ou 3 étudiants sur un thème proposé par un enseignant de la majeure suivie.

Compétences à acquérir :

Approfondissement et/ou la mise en pratique d’un thème de la majeure suivie à travers la rédaction d’un projet.


UE Optionnelles S2

Méthodes numériques : problèmes dépendant du temps

ECTS : 4

Enseignant responsable : GABRIEL TURINICI (https://turinici.com)

Langue du cours : Français et anglais

Volume horaire : 40.5

Description du contenu de l'enseignement :

Volume horaire détaillé :  CM : 16h30, TD : 12h00, TP : 12h00

  • Introduction
  • Équations Différentielles Ordinaires : Euler Implicite, Runge Kutta, consistance, stabilité, A-stabilité
  • appliations des EDO : épidemiologie
  • Calcul de dérivée et contrôle: graphe computationnel, différentiation automatique
  • application du calcul de dérivée: deep learning, contrôle 
  • Équations Différentielles Stochastiques : Euler Maruyama, Milstein
  • applications de EDS: calcul d'options en finance sur modèle log-normal

Compétences à acquérir :

Présentation de méthodes de résolution numérique des problèmes d’évolution et d’éléments d’analyse numérique. Cours théorique mais aussi une forte partie implementation (en python).

Pré-requis obligatoires

python, algèbre matricielle, 

Bibliographie, lectures recommandées :

site de Gabriel Turinici (aller au cours en question)

En savoir plus sur le cours : https://turinici.com


Statistique non paramétrique

ECTS : 4

Enseignant responsable : LAETITIA COMMINGES (https://dauphine.psl.eu/recherche/cvtheque/comminges-laetitia)

Langue du cours : Français

Volume horaire : 39

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30

  • 1 Introduction et rappels 
  • 2 Estimation de la fonction de répartition 
  • 3 Tests robustes 
  • 4 Estimation de densités par estimateurs à noyau 
  • 5 Régression non paramétrique  

Compétences à acquérir :

Décrire les méthodes d’analyse statistique qui permettent de s’affranchir de la connaissance d’un modèle de forme trop contraint; prise de conscience des hypothèses de modélisation.



Numerical optimization

ECTS : 4

Enseignant responsable : Idriss MAZARI-FOUQUER (https://dauphine.psl.eu/recherche/cvtheque/mazari-idriss)

Langue du cours : Anglais

Volume horaire : 48

Description du contenu de l'enseignement :

Numerical Optimisation

1. Introduction : a review of basic concepts in optimisation

(a) Optimality conditions, algorithms, convergence rates.

2. First part : Unconstrained optimisation-deterministic methods

(a) A crash course on gradient descent for smooth functions.

(b) The link with gradient flows.

(c) The case of non-convex functions.

(d) Acceleration of gradient descents.

(e) Newton and quasi-Newton methods.

(f) Complement : Back-propagation and machine learning.

3. Second part : Constrained optimisation-deterministic methods

(a) Penalisation method.

(b) The projected gradient method.

(c) Lagrange multipliers and duality-the interior point method.

4. Third part : Unconstrained optimisation-an introduction to stochastic methods

(a) Basic concepts in stochastic gradient descent. Convergence of the algorithm.

(b) Acceleration of stochastic gradient descent.

(c) (Mini)Batches.

Compétences à acquérir :

Mastering traditional techniques in numerical optimisation.


Certificat

SAS, Excel, Matlab

Langue du cours : Français

Volume horaire : 15

Description du contenu de l'enseignement :

Apprentissage de SAS, Excel, Matlab.

Compétences à acquérir :

Mise à niveau sur les logiciels SAS, Excel, Matlab, susceptibles d’être utilisés en projet et souvent exigés pour les stages.

Mode de contrôle des connaissances :

QCM en fin de cours


Document susceptible de mise à jour - 03/12/2025
Université Paris Dauphine - PSL - Place du Maréchal de Lattre de Tassigny - 75775 PARIS Cedex 16