La majeure "Actuariat" propose une introduction aux mathématiques de l'assurance : modélisation des risques "vie" et "non-vie"; introduction au provisionnement; théorie de la crédibilité et théorie de la ruine.
Les débouchés naturels sont les Masters 2 en actuariat (M2 Actuariat) ou en ingénierie mathématique (M2 ISF, classique ou apprentissage).
Un "English Track" est proposé aux étudiants, qui peuvent ainsi suivre la plupart des cours et des TD en anglais.
Les objectifs de la formation :
ECTS : 4
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
Présenter les notions et mécanismes de base de l’assurance, typologie des modèles.
Principe de calculs des primes et comparaison des risques.
Modélisation des risques non-vie (la fréquence des sinistres, les coûts des sinistres).
Modélisation des risques vie (probabilité viagère, valeur actuelle probable).
Éléments sur la modélisation du montant cumulé des sinistres (mutualisation et agrégation).
Compétence à acquérir :
Présenter les méthodes quantitatives de base dont dispose l’assureur pour la modélisation, la tarification et l’évaluation prévisionnelle des dépenses d’indemnisation des sinistres. Ces méthodes permettent, notamment de déterminer le montant des primes et de décider le montant de capital au risque.
Mode de contrôle des connaissances :
1 examen terminal et 1 examen partiel
ECTS : 4
Volume horaire : 39
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
Compétence à acquérir :
Étude de trois problématiques classiques en assurance : la théorie de la ruine (et les processus stochastiques associés), l’introduction au provisionnement vie et non-vie, et la théorie de la crédibilité.
Mode de contrôle des connaissances :
1 examen terminal et 1 examen partiel
ECTS : 4
Volume horaire : 37.5
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
Généralités sur l’analyse des données, tableaux, problèmes de codages.
Nuages de points et caractéristiques associées.
Analyse en Composantes Principales.
Analyse Factorielle sur Tableaux de Distances.
Analyse Factorielle des Correspondances.
Analyse des Correspondances Multiples.
Compétence à acquérir :
Donner les notions de base de l’analyse des données.
Mode de contrôle des connaissances :
Partiel au milieu du semestre et un examen final.
Bibliographie, lectures recommandées :
"Probabilités, analyse de données et Statistique" Gilbert Saporta, éditions Technip
ECTS : 2
Volume horaire : 19.5
Description du contenu de l'enseignement :
Contenu : professionnels, culturels, d’actualité et de société
Forme : débats, jeux de rôles, quiz et activités ludiques
Méthodologie : prise de parole en public, travail sur l’expression orale
Thématiques au programme: Inclusion & exclusion, Thinking outside the box
Compétence à acquérir :
Savoir s’exprimer à l’oral
Améliorer ses compétences langagières et communicationnelles
Enrichir son vocabulaire
Développer sa créativité
Travailler en équipe
Mode de contrôle des connaissances :
100% contrôle continu
3 notes : jeu de rôles +présentation orale + note d’oral
ECTS : 2
Description du contenu de l'enseignement :
Contenu : professionnel, culturel, d’actualité et de société
Forme : débats, jeux de rôles, quiz et activités ludiques
Méthodologie : prise de parole en public, travail sur l’expression orale
Thématique au programme: The professional world, Finance
Compétence à acquérir :
Savoir s’exprimer à l’oral
Améliorer ses compétences langagières et communicationnelles
Enrichir son vocabulaire
Développer sa créativité
Travailler en équipe
Mode de contrôle des connaissances :
100% contrôle continu
3 notes : jeu de rôles +présentation orale + note d’oral
ECTS : 4
Volume horaire : 39
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
Évaluation d’actifs contingents en absence d’opportunités d’arbitrage : cadre du temps discret opportunités d’arbitrage ; stratégies de réplication et évaluation ; modèle de Cox-Ross et Rubinstein.
Introduction au calcul stochastique en temps continu (mouvement Brownien ; intégrale d’Itô).
Modèle de Black et Scholes (modèle de marché en temps continu ; équation de Black et Scholes et prix d’options ; définition et utilisation des grecques).
Compétence à acquérir :
Étude du mouvement Brownien et son utilisation pour la modélisation des prix des actifs financiers. Présenter la méthodologie de l’évaluation d’actifs en Absence d’opportunités d’Arbitrage dans des modèles en temps continu et présenter le modèle de Black et Scholes.
ECTS : 4
Volume horaire : 39
Description du contenu de l'enseignement :
Sur la base d’une approche pédagogique fondée sur des exercices pratiques et des études de cas, l’étudiant acquiert les bases de la finance d’entreprise et les clés d’appréciation de leur santé financière, en particulier :
-La compréhension du langage comptable, c’est-à-dire des écritures d’enregistrement et des agrégats du compte de résultat et du bilan.
-La connaissance des méthodes de valorisation des actifs et des passifs, en particulier des provisions.
-L’analyse de la rentabilité et de la capacité d’autofinancement d’une entreprise.
-La présentation des règles essentielles en matière de consolidation de comptes.
-Des repères en matière de fiscalité et d’IFRS.
Déroulement des cours :
- Avant la séance. Des exercices simples de compréhension ou d’application sont à effectuer pour permettre aux étudiants de contrôler leurs acquis.
- Pendant la séance. Les concepts éventuels sont rappelés, approfondis, voire réexpliqués si nécessaire. Des exercices ou cas préparés par écrit sont discutés et expliqués. Leur préparation effective par les étudiants est contrôlée.
- Après la séance. Des pistes d’approfondissement, de réflexion et d’ouverture sont proposées pour permettre aux étudiants de faire le lien entre le cours, son cadre conceptuel et la réalité des entreprises.
Compétence à acquérir :
La comptabilité est un système d’organisation de l’information financière qui permet de saisir, classer et enregistrer des données chiffrées. Sa finalité est de réaliser des états à destination de tous les interlocuteurs d’une entité économique, qu’ils soient externes (administration fiscale, clients, créanciers, banques, marchés financiers), ou internes (dirigeants, gestionnaires, salariés).
Le cours d’analyse financière s’attache à apporter les bases indispensables que tout étudiant doit posséder pour connaître et comprendre les principales normes et techniques comptables applicables aux entreprises dans le cadre du plan comptable général.
Certaines divergences entre les conventions internationales (IFRS) et nationales (françaises) seront évoquées à titre d’illustration.
ECTS : 4
Volume horaire : 37.5
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
Espérance conditionnelle.
Martingales. Stratégies. Convergence des martingales. Arrêt optionnel.
Chaînes de Markov.
Compétence à acquérir :
Introduction à la modélisation aléatoire dynamique.
ECTS : 4
Volume horaire : 45
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
TP : 7h30
Modèle linéaire (gaussien et non gaussien) : estimateur des moindres carrés ordinaire, intervalles de confiance et de prédiction, test de Student et test de Fisher.
Critères de sélection de modèle (Cp de Mallows, AIC, BIC) et procédures de sélection de variables (forward, backward).
Analyse de la variance à un et deux facteurs.
Modèles linéaires généralisés, formalisation, modèles logit, probit, tobit et généralisations.
Compétence à acquérir :
Ce cours vise à décrire la construction et l’analyse des divers modèles paramétriques de régression linéaire et non-linéaire reliant un groupe de variables explicatives à une variable expliquée. Il inclut également des TP en R.
Mode de contrôle des connaissances :
Partiel, examen et projet.
ECTS : 4
Volume horaire : 40.5
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 10h30
TD : 6h00
TP : 24h00
Compétence à acquérir :
L’objectif de ce cours est d’introduire les méthodes dites de Monte-Carlo. Ces méthodes sont utilisées pour calculer des espérances (et par extension des intégrales) par simulation de variables aléatoires. La simplicite´ de la me´thode, sa flexibilite´ et son efficacite´ pour les proble`mes en grande dimension en font un outil inte´ressant pour des domaines d’applications variés allant de la physique à la finance de marché. L’objectif de ce cours est non seulement de fournir les bases théoriques des méthodes de Monte-Carlo, mais aussi de fournir les outils pour leur utilisation pratique.
Mode de contrôle des connaissances :
Bibliographie, lectures recommandées :
ECTS : 4
Description du contenu de l'enseignement :
Rédaction d’un projet par groupe de 2 ou 3 étudiants sur un thème proposé par un enseignant de la majeure suivie.
Compétence à acquérir :
Approfondissement et/ou la mise en pratique d’un thème de la majeure suivie à travers la rédaction d’un projet.
ECTS : 4
Volume horaire : 40.5
Description du contenu de l'enseignement :
Volume horaire détaillé : CM : 16h30, TD : 12h00, TP : 12h00
Compétence à acquérir :
Présentation de méthodes de résolution numérique des problèmes d’évolution et d’éléments d’analyse numérique. Cours théorique mais aussi une forte partie implementation (en python).
Bibliographie, lectures recommandées :
site de Gabriel Turinici (aller au cours en question)
ECTS : 4
Volume horaire : 48
Description du contenu de l'enseignement :
Numerical Optimisation
1. Introduction : a review of basic concepts in optimisation
(a) Optimality conditions, algorithms, convergence rates.
2. First part : Unconstrained optimisation-deterministic methods
(a) A crash course on gradient descent for smooth functions.
(b) The link with gradient flows.
(c) The case of non-convex functions.
(d) Acceleration of gradient descents.
(e) Newton and quasi-Newton methods.
(f) Complement : Back-propagation and machine learning.
3. Second part : Constrained optimisation-deterministic methods
(a) Penalisation method.
(b) The projected gradient method.
(c) Lagrange multipliers and duality-the interior point method.
4. Third part : Unconstrained optimisation-an introduction to stochastic methods
(a) Basic concepts in stochastic gradient descent. Convergence of the algorithm.
(b) Acceleration of stochastic gradient descent.
(c) (Mini)Batches.
Compétence à acquérir :
Mastering traditional techniques in numerical optimisation.
ECTS : 4
Volume horaire : 37.5
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
Optimisation dans R^n (cas général et cas convexe).
Optimisation sous contraintes d’égalités et d’inégalités : KKT, cas convexe, lemme de Farkas, dualité, méthodes numériques (gradient projeté, Usawa).
Programmation dynamique en temps discret (problèmes en horizon fini, problèmes en horizon infini avec coût escompté). Calcul des variations. Introduction à la théorie du contrôle optimal (principe de Pontriaguine, équation de Hamilton-Jacobi-Bellman).
Compétence à acquérir :
L’objectif de ce cours est d'étudier, d’une part, l’optimisation sous contraintes dans R^n et, d’autre part, les techniques de programmation dynamique déterministe qui sont fondamentales dans les applications.
Mode de contrôle des connaissances :
Examen sur table (mi-semestre et fin de semestre).
ECTS : 4
Volume horaire : 39
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
- Définitions et propriétés importantes des processus de Poisson (loi jointe des temps sauts, comportements asymptotiques).
- Définitions et propriétés importantes des processus de Markov à espace d’états dénombrable.
Compétence à acquérir :
Introduction des processus à temps continus fondamentaux en probabilités, tels que les chaînes de Markov à espace d’états dénombrable.
ECTS : 4
Volume horaire : 39
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
Théorie de Markowitz pour le choix de portefeuille (critère moyenne-variance) ; notion de portefeuille efficient ; mesure de risque et Value at Risk.
Portefeuille de Marché et Portefeuille Tangent, théorème des deux fonds, modèle du CAPM, équation de la Security Market Line et beta.
Les différents indicateurs : ratio de Sharpe, alpha, ratio de Treynor.
La décompostion et rémunération du risque: modèles à facteurs, modèle de Fama-French, modèles APT.
Analyse factorielle.
Compétence à acquérir :
Ce cours est une introduction aux méthodes quantitatives en gestion de portefeuille.
Mode de contrôle des connaissances :
Partiel, Examen, potentiellement projet en Python
Bibliographie, lectures recommandées :
"Quantitative Portfolio Management", Pierre Brugière, Springer 2020
ECTS : 0
Volume horaire : 15
Description du contenu de l'enseignement :
Apprentissage de SAS, Excel, Matlab.
Compétence à acquérir :
Mise à niveau sur les logiciels SAS, Excel, Matlab, susceptibles d’être utilisés en projet et souvent exigés pour les stages.
Mode de contrôle des connaissances :
QCM en fin de cours
ECTS : 4
Volume horaire : 39
Description du contenu de l'enseignement :
Compétence à acquérir :
Connaître les bases de l’apprentissage statistique, en particulier dans un contexte de grande dimension, incluant les "neural networks".
Mode de contrôle des connaissances :
cf. CC
Bibliographie, lectures recommandées :
cf. site du cours.
ECTS : 4
Volume horaire : 39
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
Compétence à acquérir :
Décrire les méthodes d’analyse statistique qui permettent de s’affranchir de la connaissance d’un modèle de forme trop contraint; prise de conscience des hypothèses de modélisation.
ECTS : 4
Volume horaire : 37.5
Description du contenu de l'enseignement :
Volume horaire détaillé :
CM : 19h30
TD : 19h30
Échantillonnage
Quantification
Compression sans perte et correction d’erreurs
L’algorithme FFT
Filtres numériques
Conception de filtres numériques
Compression avec perte, introduction au MP3
Compétence à acquérir :
Comprendre les mathématiques du filtrage et du traitement de l’information et les principes de la numérisation des signaux. Avoir une vision globale des techniques du traitement de l’information.