Bayesian non parametric and Bayesian Machine Learning
ECTS : 4
Volume horaire : 18
Description du contenu de l'enseignement :
Bayesian nonparametrics:
- Basics: infinite mixture models and clustering
- Models beyond the Dirichlet process
- Posterior sampling
- Applications
Gaussian Processes
Bayesian Deep Learning
Compétence à acquérir :
Essential concepts of Bayesian nonparametrics
Essentials of Bayesian Deep Learning
Bibliographie, lectures recommandées :
- Hjort, N. L., Holmes, C., Müller, P., & Walker, S. G. (Eds.). (2010). Bayesian nonparametrics (Vol. 28). Cambridge University Press.
- Orbanz, P., & Teh, Y. W. (2010). Bayesian nonparametric models. Encyclopedia of machine learning, 1, 81-89.
- Müller, P., Quintana, F. A., Jara, A., & Hanson, T. (2015). Bayesian nonparametric data analysis (Vol. 1). New York: Springer.
- Ghosal, S., & van der Vaart, A. W. (2017). Fundamentals of nonparametric Bayesian inference (Vol. 44). Cambridge University Press.
- Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
- Murphy, K. P. (2023). Probabilistic machine learning: Advanced topics. MIT press.