Retour
Deep renforcement learning et applications
ECTS : 3
Volume horaire : 24
Description du contenu de l'enseignement :
What you will learn in this class?
- Intro and Course Overview
- Supervised Learning behaviors
- Principles of Reinforcement Learning
- Policy Gradients
- Actor-Critic Algorithms (A2C, A3C and Soft AC)
- Value Function Methods
- Deep RL with Q-functions
- Advanced Policy Gradient (DDPG, Twin Delayed DDPG)
- Trust Region & Proximal Policy Optimization (TRPO, PPO)
- Optimal Control and Planning
- Model-Based Reinforcement Learning
- Model-Based Policy Learning
- Exploration and Stochastic Bandit in RL
- Exploration with Curiosity and Imagination
- Offline RL and Generalization issues
- Offline RL and Policy constraints
Why you should choose this course about DRL?
- DRL Is a very promising type of learning as it does not need to know the solution
- DRL Only needs the rules and good rewards
- DRL Combines the best aspects of deep learning and reinforcement learning.
- DRL has achieved impressive results in games, robotic, finance and many more fields
References
- Bertsekas, Dynamic Programming and Optimal Control, Vols I and II
- Goodfellow, Bengio, Deep Learning
- Powell, Approximate Dynamic Programming
- Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming
- Sutton & Barto, Reinforcement Learning: An Introduction
- Szepesvari, Algorithms for Reinforcement Learning
Compétence à acquérir :
What you will acquire in this class?
- Understand principles of Deep Reinforcement Learning (DRL)
- Know main DRL algorithms
- Get some intuition about what DRL is good and not good at?
- Program DRL algorithms
Université Paris Dauphine - PSL - Place du Maréchal de Lattre de Tassigny - 75775 PARIS Cedex 16 - 21/11/2024