Retour

Algorithmes pour l'optimisation continue

ECTS : 3

Volume horaire : 15

Description du contenu de l'enseignement :

Course Content:

- Derivatives and Gradients

- Bracketing Techniques

- Local Descent Methods

- First-Order Optimization Methods

- Second-Order Optimization Methods

- Direct Optimization Methods

- Stochastic Optimization Techniques

- Introduction to Advanced Topics: Constrained Optimization, Multi-objective Optimization, and more.

Additionally, the course will provide a foundational introduction to Julia programming, integrated throughout the curriculum. 

Compétence à acquérir :

The course provides a broad introduction to optimization with a focus on practical algorithms for the design of engineering systems. The course covers a wide variety of optimization topics, introducing the underlying mathematical problem formulations and the algorithms for solving them. 

Mode de contrôle des connaissances :

Bibliographie, lectures recommandées :

-Algorithms for Optimization. Mykel J. Kochenderfer and Tim A. Wheeler

https://mitpress.mit.edu/9780262039420/algorithms-for-optimization/

-Julia Documentation

https://docs.julialang.org/en/v1/

Université Paris Dauphine - PSL - Place du Maréchal de Lattre de Tassigny - 75775 PARIS Cedex 16 - 21/11/2024