Retour

Linear models and generalizations

ECTS : 4

Volume horaire : 45

Description du contenu de l'enseignement :

Volume horaire détaillé : 
CM : 19h30
TD : 19h30
TP : 7h30

Modèle linéaire (gaussien et non gaussien) : estimateur des moindres carrés ordinaire, intervalles de confiance et de prédiction, test de Student et test de Fisher. 

Critères de sélection de modèle (Cp de Mallows, AIC, BIC) et procédures de sélection de variables (forward, backward). 

Analyse de la variance à un et deux facteurs. 

Modèles linéaires généralisés, formalisation, modèles logit, probit, tobit et généralisations.

Compétence à acquérir :

Ce cours vise à décrire la construction et l’analyse des divers modèles paramétriques de régression linéaire et non-linéaire reliant un groupe de variables explicatives à une variable expliquée. Il inclut également des TP en R.

Mode de contrôle des connaissances :

Partiel, examen et projet. 

Université Paris Dauphine - PSL - Place du Maréchal de Lattre de Tassigny - 75775 PARIS Cedex 16 - 21/11/2024