Méthodes numériques : problèmes dépendant du temps
ECTS : 4
Volume horaire : 40.5
Description du contenu de l'enseignement :
Volume horaire détaillé : CM : 16h30, TD : 12h00, TP : 12h00
- Introduction
- Équations Différentielles Ordinaires : Euler Implicite, Runge Kutta, consistance, stabilité, A-stabilité
- appliations des EDO : épidemiologie
- Calcul de dérivée et contrôle: graphe computationnel, différentiation automatique
- application du calcul de dérivée: deep learning, contrôle
- Équations Différentielles Stochastiques : Euler Maruyama, Milstein
- applications de EDS: calcul d'options en finance sur modèle log-normal
Compétence à acquérir :
Présentation de méthodes de résolution numérique des problèmes d’évolution et d’éléments d’analyse numérique. Cours théorique mais aussi une forte partie implementation (en python).
Bibliographie, lectures recommandées :
site de Gabriel Turinici (aller au cours en question)