ECTS : 2
Volume horaire : 30
Description du contenu de l'enseignement :
1. Classification non supervisée : Partitionnement et Classification hiérarchique. Méthodes de la Classification Hiérarchique (Classification Ascendante Hiérarchique, liens avec les ultramétriques, formule de Lance et Williams, voisins réciproques), Méthode des k-means et variantes (convergence de l’algorithme, version « batch », algorithmes d’échange), évaluation d’un partitionnement par mesure de l’adéquation avec les données, et par mesure de la stabilité des résultats.
2. Réseaux de neurones : méthode du perceptron (propriétés mathématiques et limites), algorithme de rétro-propagation (propriétés d’approximateur universel). Estimation du taux de classement, validation et mesure de la capacité de généralisation des méthodes de classement. Choix de l'architecture d'un réseau.
3. Autres méthodes : Support Vecteur Machines (SVM) ; utilisation de fonctions noyau ; approches ensemblistes en apprentissage supervisé : boosting, adaboost.
4. Étude de cas sur des jeux de données réelles : il s’agit de montrer aux étudiants comment formaliser un problème relevant du Machine Learning, et de mettre en œuvre, avec le logiciel R.
Compétence à acquérir :
Ce cours a pour objectif de former les étudiants aux méthodes de base et aux concepts fondamentaux du Machine Learning.
Bibliographie, lectures recommandées :