Retour
Apprentissage statistique
ECTS : 3
Volume horaire : 21
Description du contenu de l'enseignement :
- Supervised Learning: Bayes decision rule, Consistency and no free lunch theorem, Hypothesis class,Probably Approximately Correct (PAC) framework. Empirical Risk Minimization (ERM), PA Cbounds with ERM
- Concentration Inequalities : Chebyshev’s inequality,Hoeffding’s inequality,Sub-Gaussian random variables, Concentrations of functions of random variables,Bernstein’s deviation inequality,Deviation inequality for quadratic forms
- Generalization Bounds via Uniform Convergence: Finite hypothesis class, Bounds for infinite hypothesis class via discretization, Rademacher complexity (RC), Empirical RC,
- Bounding the Rademacher complexity: Shattering numbers, VC theory, Covering number, entropy, Dudley’s chaining
Compétence à acquérir :
L'objectif du cours est d'acquérir des notions théoriques d'apprentissage statistique.
Mode de contrôle des connaissances :
Examen final.
Université Paris Dauphine - PSL - Place du Maréchal de Lattre de Tassigny - 75775 PARIS Cedex 16 - 21/11/2024